Bi-2DPCA: A Fast Face Coding Method for Recognition

نویسندگان

  • Jian Yang
  • Jing-yu Yang
چکیده

Face recognition has received significant attention in the past decades due to its potential applications in biometrics, information security, law enforcement, etc. Numerous methods have been suggested to address this problem [1]. Among appearance-based holistic approaches, principal component analysis (PCA) turns out to be very effective. As a classical unsupervised learning and data analysis technique, PCA was first used to represent images of human faces by Sirovich and Kirby in 1987 [2, 3]. Subsequently, Turk and Pentland [4, 5] applied PCA to face recognition and presented the well-known Eigenfaces method in 1991. Since then, PCA has been widely investigated and has become one of the most successful approaches to face recognition [6-15]. PCA-based image representation and analysis technique is based on image vectors. That is, before applying PCA, the given 2D image matrices must be mapped into 1D image vectors by stacking their columns (or rows). The resulting image vectors generally lead to a highdimensional image vector space. In such a space, calculating the eigenvectors of the covariance matrix is a critical problem deserving consideration. When the number of training samples is smaller than the dimension of images, the singular value decomposition (SVD) technique is useful for reducing the computational complexity [1-4]. However, when the training sample size becomes large, the SVD technique is helpless. To deal with this problem, an incremental principal component analysis (IPCA) technique has been proposed recently [16]. But, the efficiency of this algorithm still depends on the distribution of data. Over the last few years, two PCA-related methods, independent component analysis (ICA) [17] and kernel principal component analysis (KPCA) [18, 19] have been of wide concern. Bartlett [20], Yuen [21], Liu [22], and Draper [23] proposed using ICA for face representation and found that it was better than PCA when cosine was used as the similarity measure (however, the performance difference between ICA and PCA was not significant if the Euclidean distance is used [23]). Yang [24] and Liu [25] used KPCA for face feature extraction and recognition and showed that KPCA outperforms the classical PCA. Like PCA, ICA and KPCA both follow the matrix-to-vector mapping strategy when they are used for image analysis and, their algorithms are more complex than PCA. So, ICA and KPCA are considered to be computationally more expensive than PCA. The experimental results in 16

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Face Recognition Method of the Two-direction Variation of 2DPCA

This paper first discusses the relationship of Principal Component Analysis (PCA) and 2-dimensional PCA (2DPCA). For 2DPCA eliminating some covariance information which can be useful for recognition,and needing more coefficient for image presentation, a The face recognition method of the two-direction variation of 2DPCA (TDV2DPCA) is proposed, which makes use of more discriminant information in...

متن کامل

Random Subspace Two-Dimensional PCA for Face Recognition

The two-dimensional Principal Component Analysis (2DPCA) is a robust method in face recognition. Much recent research shows that the 2DPCA is more reliable than the well-known PCA method in recognising human face. However, in many cases, this method tends to be overfitted to sample data. In this paper, we proposed a novel method named random subspace two-dimensional PCA (RS-2DPCA), which combin...

متن کامل

Robust Face Recognition by Using Multidirectional 2DPCA

In this paper a new technique Directional 2DPCA is developed. Face image was firstly rotated to several directional, the directional 2DPCA that can extract features from the matrixes in any direction. In 2DPCA reflects the information in each row but it cannot be uncovered the structural information so in this paper features can extract in any direction. Features were extracted from original fa...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Face Recognition Based on SVM and 2DPCA

The paper will present a novel approach for solving face recognition problem. Our method combines 2D Principal Component Analysis (2DPCA), one of the prominent methods for extracting feature vectors, and Support Vector Machine (SVM), the most powerful discriminative method for classification. Experiments based on proposed method have been conducted on two public data sets FERET and AT&T; the re...

متن کامل

Volume measure in 2DPCA-based face recognition

Two-dimensional principal component analysis (2DPCA) is based on the 2D images rather than 1D vectorized images like PCA, which is a classical feature extraction technique in face recognition. Many 2DPCA-based face recognition approaches pay a lot of attention to the feature extraction, but fail to pay necessary attention to the classification measures. The typical classification measure used i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012